WATERSHED ASSESSMENT IN THE TSAILE, WHEATFIELDS AND WHISKEY CREEK WATERSHEDS

2018

Prepared by: Marquel Begay- University of Arizona, MS Water, Society, and Policy Tyler Begay- Diné College, Biology

Land Grant Office Extension and Outreach

Introduction

• Purpose:

• Develop a general watershed profile for the Tsaile, Wheatfields and Whiskey Creek watersheds which will aid in developing a long-term watershed plan for the Tsaile/Wheatfields/Blackrock community.

• Main objectives:

Conduct water quality assessment
 Apply watershed best management practices (BMPs)
 Build-capacity with community and stakeholders

Wheatfields Creek

- 1. Conduct Water Quality Test (ArcMap 10.4, GPS)
 - *A.* <u>Paramaters</u>
 ✓ Salinity
 ✓ Dissolved Oxygen
 ✓ Temperature
 ✓ pH
 ✓ Conductivity
 ✓ Total Dissolved Solids
 ✓ Nitrate, Phosphate, Ammonia
 - ✓E. coli
 - ✓ Heavy metals
 - ✓ Benthic Invertebrates
 - b. Identify risks to water quality

Site Reports (Photos, Coordinates, Attributes)

STREAM MEASUREMENTS	Stream name:	Reach n	ame:		
Personnel:		Date:			Time:
Total width:	GPS coordinates:				
Riparian tree species:			Discharge	e (25 meas	urements)
			Wetted		Incremen
Herbaceous riparian species:			width:	-	t width:
				Depth	Velocity
Bank stability description:				(cm)	(m/s)
Canopy cover:			1		
			2		
Water quality			3		
Dissolved oxygen (mg/L):			4		
Temperature (C):			5		
pH:			6		
ORP (mv):			7		
Conductivity (µS):			8		
TDS:			9		
Salinity (ppt):			10		
			11		
Samples collected for lab analy	sis		12		
Nitrate/ammonia/phosphate:	Y or N		13		
Heavy metals: Y or N			14		
Aquatic invertebrates: Y or	Ν		15		
			16		
Other notes			17		
			18		
			19		
			20		

Spring discharge (estimated):

STREAM ECOLOGY MEASUREMENTS Stream name:

Reach name:

Personnel:

Date:

Habitat delineation (riffles, runs, pools, dry)

Start (m):	End (m):	Habitat									

Aquatic invertebrates

Order	Relative abundance	Families present?	

Tsaile Headwaters

TSAILE \$

Pipe Spring

Pre Tsaile Lake

Hanging Garden Spr

Post Tsaile Lake

Developed Spring (Water Hauling Site)

Upper Wheatfields

Pre Wheatfields Lake

Post Wheatfields Lake

Whiskey Creek

Headwaters

Midstream

Downstream

Field collection: September 22-23, 2018 Status: analysis in process

Lab: E.coli

ANDG TAXABLE PARTY AND

Tyler Begay, Dine College Biology Student sealing e. coli trays

Valerisa Joe, UA phD Candidate counting coliforms

Lab: Nitrate, Phosphate & Ammonia

Lab: Heavy Metals

Acidifying samples

Field collection: September 22-23, 2018 Lab: samples in process

2. Apply best watershed management practices (BMPs)

a. <u>Stream buffers</u>

- ✓ Presented at grazing committee meeting
- ✓ Developed 4 plots total (~36 ft x 15 ft)
- ✓4 plots before Wheatfields Lake
 - 2 horizontal plots
 - 2 meandering plots

Site Reports (Photos, Coordinates, Attributes)

2. Apply best watershed management practices (BMPs) continued...

- a. <u>Pervious Check Dams</u>
 - ✓ Lead rock dam building to treat different types of erosion
 - Overgrazing
 - Roads
 - Gully erosion

- 3. Build capacity with community and stakeholders
 - a. Organize Teach-In
 - a. Community education outreach
 - b. Identify community priority concerns and recommendations

b. Meet with Navajo Nation Departments

- a. Water Resources
- b. Agriculture
- c. Forestry
- d. Fish & Wildlife
- e. Navajo Environmental Protection Agency
- f. Historic Preservation
 - Identify roles and responsibilities for developing integrated watershed plan

Water Quality Results

Table 204.1 Numeric Targets for Lakes and Reservoirs										
Designated Use	Lake Category	Chl-a (ug/L)	Secchi Depth (m)	Total Phosphorus (ug/L)	Total Nitrogen (mg/L)	Total Kjeldahl Nitrogen (TKN)	Blue-Green Algae (per ml)	Blue-Green Algae (% of total)	Dissolved Oxygen (mg/L)	pН
	Deep	10–15	1.5-2.5	70-90	1.2-1.4	1.0-1.1				
PrHC	Shallow	10-15	1.5-2.5	70-90	1.2-1.4	1.0-1.1	20.000			65-90
	Igneous 20-30 0.5-1.0 100-125	100-125	1.5-1.7	1.2-1.4	20,000			0.0 7.0		
	Sedimentary	20-30	1.5-2.0	100-125	1.2-1.4	1.2-1.4				
A&WHbt (cold water)	All	5-15	1.5-2.0	50-90	1.0-1.4	0.7-1.1		<50		65-9.0
A&WHbt (warm water)	All	25-40	0.8-1.0	115-140	1.6-1.8	1.3-1.6		-50		0.5-9.0
Dom	All	10-20	0.5-1.5	70-100	1.2-1.5	1.0-1.2	20,000			5.0-9.0

Source: Navajo Nation EPA Water Quality Program Guidelines

Tsaile high due to (time)

Risks to Water Quality

Headcut Erosion - upstream

Sediment transport degrades water quality

Large amounts of **<u>sediment</u>** deposition into lakes

Southeast of Wheatfields Lake

Cause E. Coli & stream bank erosion

Heavy metals depositing into soil

Northwest of Tsaile Irrigation Project

South of Wheatfields Lake

Wheatfields Lake

Humans throwing trash near streams & lakes

Dirt roads crossing streams

Upper Wheatfields

Pollutants such as vehicle exhaust, oil, and dirt, and deicing chemicals, are deposited to streams

<u>Russian Olives</u> and <u>Tamarisk</u> **lower water table, reduce agriculture potential, diminish grazing, pose fire threat, destroy archaeological sites, outcompete native species** (Environmental Assessment, 2005)

Best Management Practices Results

Plot #1

Stream buffers

Wednesday, July 11, 2018

September, 22, 2018

Wednesday, July 11th, 2018

Recommendations: Next Steps

PROJECT	CONTACT	DEADLINE
Meet with Stakeholders	 Navajo Nation Departments Native Nations Institute (UA) 	December 2018
Climate Change Adaptation Planning Workshop with community	 Institute of Tribal Environmental Professionals (NAU) 	December 2018
Complete Water Portfolio	1. University of Arizona (Marquel)	April 2019
 Conservation Projects Clean-up dump sites Watershed restoration workshop Stream buffers Invasive species removal 	 Tsaile/Wheatfields Chapter House Dine College Land Grant Office Tsaile Wheatfields Dineh Water User Association 	May to August 2019

Conclusion

• Water Quality

- pH measurements meet Navajo Nation Water Quality Standards (5-9), however Tsaile Lake was found to be a little over the standard limit at 9.29
- Heavy Metals & Macroinvertebrates will be assessed in the Fall at UA Lab

• Risks

• illegal dumping, e. coli from livestock & wildlife, erosion, dirt roads

• BMPs

- Stream buffers improve water quality
- Rock dams reduce erosion and watershed health

• Challenges:

- Getting in contact with Safety of Dams for tour of Tsaile & WF Lakes
- Stream buffer limited
- Time & expert availability low in the summer
- GIS data for range and land use units not allowed to access

'Ahéhee'!

THE R. P. LEWIS

WATER USERS Association

THE UNIVERSITY OF ARIZONA.

COLLEGE OF AGRICULTURE AND LIFE SCIENCES

Navajo Nation Department of Water Resources

LABORATORY OF TREE-RING RESEARCH THE UNIVERSITY OF ARIZONA

